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The principal relations of cyclic filtration and variable-rate filtration are established within the framework of a generalized 
mathematical model, the prototype of which is the Shekhtman model [l]. 0 2002 Elsevier Science Ltd. All rights reserved. 

As a rule, existing mathematical models of filtration through porous media do not enable one to describe 
cyclic filtration and variable-rate filtration which are extensively used in industry. At the same time, in 
order to achieve this aim, it is sufficient to employ generalized mathematical models of the minimum 
necessary degree of generality, that is, in the case being considered here, to take account, in existing 
models, of the dependence of the inlet concentration on time, the initial distribution of the deposit, 
the existence of a transient state of limiting saturation of the charge by the deposit and the dependence 
of the coefficients on the filtration rate. (An important exception to what has been said above is the 
initial stage of magnetic cyclic filtration, that is, the stage up to the processing of the inlet cross-section 
of the charge when the concentration at the filter outlet does not depend on time [2]). 

1. A VARIABLE FILTRATION RATE 

The generalized Shekhtman mathematical model, with appropriate additional conditions in the case 
being considered, has the form 

aP dr+u(I)g=o, ap ;i;=f3(r,c 1-p 
[ I p*(r) 

(1.1) 

c Ix=o= co, P Lo= PO(X) (1.2) 

Here, x is the coordinate in the direction of filtration (0 < x 4 L, L is the height of the charge), u(t) 
is the filtration rate, P(t) is the kinetic coefficient, C(x, t) is the concentration of the particles suspended 
in the pores of the charge, Co = const is their concentration at the filter inlet, P(x, t) is the concentration 
of the deposit in the charge and p*(t) is the limiting density of saturation of the charge by the deposit 
at the instant of time t [3] 

P.0) = PWCO 1 a(r), 00) = a&J (t), a, = const 

On eliminating the concentration p from system (l.l), we obtain an equation which, after integrating 
with respect to x taking account of the first condition of (1.2), leads to the Bernoulli equation 

ac ao am 
X’c, at - x--u(f)co 

i I c=- a0 WC2 
CO 

(1.3) 

In order to solve this equation, we will first find the corresponding initial condition from system (1.1). 
This initial condition has the form 

CI,=,=~ 
E,(x) ’ 

El(x)=exp{~[[I-~-/id} (1.4) 
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Solving Eq. (1.3) with initial condition (1.4), we obtain 

C(x,t) = C&(x,t)E,(x,r) (1.5) 

}, Wx.r)=[ 4(X)+uo~u(~)E,(X,r)m o I’ 

System (1.1) is non-linear with respect to the concentration p, and hence the possibility of solving it 
by eliminating the concentration C is problematic. However, p can be found from the second equation 
of (1.1) in which the derivative splat is now replaced by the known function (-u(t) Xl&) from Eq. 
(1.1). Hence, using expression (1.5), we shall have 

co alnc 
p(x,r)=p*W+-T =[po(x)E,(x)+aoju(z)P*(~)~*(x~~)~~l~~(x.~) 

a0 0 
(1.6) 

Expressions (1.5) and (1.6) contain a whole volume of information on the process of variable-rate 
filtration through homogeneous charges, the mass transfer in which occurs in accordance with the laws 
which have been adopted in models (1.1) and (1.2). These expressions are sufficient for solving a number 
of optimization problems in the case of variable-rate filtration, and not only for finding the times of 
the protective action of the filter and the times taken to reach the limiting pressure losses to which one 
is usually confined in filtration theory. 

In the few papers on the theory of filtration with a decreasing rate, this rate is approximated, as a 
rule, by functions which enable one to obtain solutions acceptable for applied calculations. For example, 
the required decrease in the filtration rate has been approximated by a step function [4] and the possibility 
of approximating the linear law for its decrease by a hyperbolic law under actual operating conditions 
for filters has been demonstrated in [5]. 

Filtration at a variable rate in the direction of the flow occurs in filters with a changing geometry. 
However, this is a special case of mass transfer which is more general than the case considered. Actually, 
it can be shown (see [6]) that constancy of the cross-section of the charge is implicitly assumed in 
Eqs (1.1). 

2. CYCLIC FILTRATION 

In accordance with the actual conditions for filters operating under cyclic conditions, it is assumed that 
the volume of the liquid that is filtered is significantly greater than the working volume of the filter. 
For the same reasons, it is assumed that the filtration rate is constant and that the charge of the filter 
is free from a deposit at the initial instant of time. 

We will change to dimensionless variables, using p*/(pCo), u/p, Co, p* as the scales of time, length, 
concentration of the suspended particles and concentration of the deposit, respectively. The previous 
notation is retained for the new variables. 

The initial system of equations for the ith cycle (i = 1, 2, . . . , n) in the dimensionless variables and 
with the corresponding additional conditions has the form 

api+sc,=O 
at ax ) 

api=c.(,_p.) 
at ’ ’ (2.1) 

Here to is the duration of a single filtration cycle, Ci(X, t) is the normalized concentration of the 
suspended particles in the charge within the limits of the ith cycle, Co = 1 is the normalized initial 
concentration of these particles in the liquid being filtered or their concentration at the filter inlet during 
the first filtration cycle, Co(t) is the normalized concentration of the suspended admixed particles at 
the filter inlet within the limits of the (i + 1)th cycle, C,(L, t) is their normalized concentration at the 
filter outlet within the limits of the ith cycle, oi(X, t) is the normalized concentration of the deposit which 
has accumulated in the charge after a time [(i - l)to + t], and pO(x, 0) is the normalized distribution of 
the deposit in the charge at the beginning of the first cycle. 

For each but first cycle, the input concentration is the output concentration of the preceding cycle 
and the initial distribution of the deposit is its distribution after the time t0 of the duration of the 
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preceding cycle. The time taken for the liquid to pass through the filter can be neglected since, in practice, 
the volume of this liquid is significantly greater than the working volume of the filter. 

Solving problem (2.1), (2.2) in accordance with the algorithm presented in Section 1, we obtain 

Cj(~,r)=Ci_~(~~r)zj_~(t,r)~(~,~,r,r~) 

pi(x,r)=[Zi-,(L,r)-l+p,_l(X,r0)~(x,r0)l~(x,L,r,ro) (2.3) 

Ql(x,L,r,ro)=[Ro(x,ro)+Zi_~(L,r)-11-I 

%(*,fg)=explj[l-p,_,(x’.r~)ldr’), Zi_,(L,r)=exp[jCi_I(L,7~~~] 
0 0 

From this, we find, in accordance with conditions (2.2), the concentrations C,(x, r) and pi(x, r) in the 
first filtration cycle 

C,(x,r) = ” P,(x,r)= 
B, (r) 

e’+ A, (x) ’ ex+ S, 0) 
(2.4) 

A,(x)=eI-I, B1(r) = e’- 1 

In order to find the concentrations C,(.r, r) and p2(x, r) in the second filtration cycle, we substitute 
the expressions for the input concentration C,(L, r) and the initial distribution of the deposit p,(x, to) 
into relations (2.3). We obtain 

C,(x, r) = e’ 
e’+A*(x)* 

p2(x,r) = B,(t) 
e”+BZ(r) 

AZ(x) = eLefo (e’+ era - 1) - 1, f+(O=e tO-L(e’+eL- l)- 1 

In a similar way, we find the concentrations C,, (x, t) and p,, (x, r) in the nth filtration cycle 

C,(x,r)= e’ 4, (r) 
e’+A,,(x)’ 

p,(x,r) = 
e’+ B,(r) 

(2.5) 

(2.6) 

Here, 

A,(x)=eX-1, Anz5*(x)= I+ A,,-, CL) 

l+B,_,O,) 
[e”+4,_A~o)l-l 

B,(r)=e’-1, B,,(r)= :=~II~~:[e’+A”_,(L)]-l; n=2.3,... 
n I 

The positiveness of the functionsAi(x) and&(r) (i = 2,3, . . . , n) for arbitraryx and t, the positiveness 
of the functions A,(x) and B,(r) when 0 c x s L, 0 c r G to(Ai(0) = 0, Bi(0) = 0) and, also, the 
inequalities 

Ai+l (X) > A,(x), 

follow from expressions (2.3)-(2.6). 

B,,,, (0 > A, (0 

._ _??+A+... _+&I3 
I 

i i i i i i i . . . . . 

‘(m - I)to 
’ . . . ’ 

ml0 (n - 2)r, (n - 1 Jr0 “to 1 

Fig. 1 
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It can therefore be concluded that 

aCi(X,t)lar>O, api(X,r)lax<OwhenO<x<L and O<t<f, 

Consequently, within the limits of a single cycle, the concentration Ci(X, t) is a monotonically increasing 
function of time and the concentration Pi(X, t) is a monotonically decreasing function of x when 
t = const. However, for fixed x and t, the concentration Ci(X, t) decreases and the concentration Pi(X, 
t) increases as the number of filtration cycles (i) increases. 

Compared with simple filtration, cycle filtration has basic characteristics as a consequence of which 
the need arises to generalize certain basic characteristics of the filtration process and to introduce new 
characteristics. This applies, first, to the time of the protective action of the filter f,, instead of which 
it is advisable to introduce a cyclic clearing (cleaning) time of the liquid being IJi ltered, t,, up to a 
previously specified level ~(0 < P < 1). Actually, in the case of simple filtration and a constant input 
concentration, the concentration at the filter outlet C(L, t) increase continuously. The time tp was 
therefore defined as the time taken to attain the limiting admissible level P of the concentration of the 
admixed particles in the liquid being filtered, after which the filtration was stopped. In the case of cyclic 
filtration being considered, the concentration at the filter outlet C(Z+ t) has the form of a sequence of 
curvilinear trapezia with a height which decreases as the cycle number increases (Fig. 1). In other words, 
the situation is fundamentally different here and, in particular, because, during the whole time up to 
when filtration ceases or a significant part of it, the concentration at the filter outlet C(L, r) exceeds 
the permissible level. It is therefore natural to define the time tc as the time from when the quality of 
the filtrate in subsequent filtration is no worse than what is required. This means that the time tc is 
defined differently depending on the intended destination of the filtrate (like the time f,, in the case of 
a variable input concentration). In fact, situations are possible in the general case under cyclic conditions 
when the level P is attained at different instants of time t during a quite considerable number of cycles 
(Fig. 1). As a rule, the requirement of the consumer regarding the filtrate quality is either a requirement 
concerning the average value of the output concentration Ci(L, t) after a time to or a different kind of 
constraint on the characteristics of the overshoots in this concentration above the level P after a specified 
period of time. It is therefore best to shut down the filtration process long before the nth cycle, starting 
from which the curve C,(L, t) sinks completely below the level ~1. It is thereby possible to avoid excessive 
cleaning of the liquid being filtered and to increase the filter output. 

Apart from the time t,, the time at which the limiting pressure losses are reached, f,, , is also one of 
the number of basic characteristics of the cyclic filtration process. To calculate it is necessary to establish 
how the pressure drop on the charge of the filter h,(t) increases under the operating conditions being 
considered. In the case of filters of constant cross-section with an arbitrary homogeneous charge, we 
have [3] 

(2.7) 

where i. = const is the initial hydraulic gradient, E o = const is the initial porosity of the charge, 
E, (x, t) is the porosity of the charge in a cross-section x at the instant of time t within the limits of the 
nth filtration cycle and y is the density of the deposit which is formed. Changing to the dimensionless 
variables X, t, pn, z = ex + B,,(t) with the scales introduced earlier and the dimensionless variable h,(t) 
with the scale iou/p, while retaining the previous notation for these variables, and substituting expression 
(2.6) for Pn into (2.7) we have 

r. =fj =r, =rj =(I-P)~, r, = r6 = 1, rs = 1-3~; P=P*WO) 

q. = ho, qr(‘) = ?[M’(r)- Nk(r)J 

Mk(r) = [eL +B,(t)Jk, /vk(t) = I + B,(r), k = 1,2,...,6 

Hence, the time ?h is determined for a specified hydraulic pressure. 
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The expressions obtained above are sufficient to optimize the operation of filters of the type which 
has been considered working under cyclic conditions. 
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